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Real-life decisions are often repeated. Whether considering taking
a job in a new city, or doing something mundane like checking if
the stove is off, decisions are frequently revisited even if no new
information is available. This mode of behavior takes a particu-
larly pathological form in obsessive–compulsive disorder (OCD),
which is marked by individuals’ redeliberating previously resolved
decisions. Surprisingly, little is known about how information is
transferred across decision episodes in such circumstances, and
whether and how such transfer varies in OCD. In two experi-
ments, data from a repeated decision-making task and computa-
tional modeling revealed that both implicit and explicit memories
of previous decisions affected subsequent decisions by biasing the
rate of evidence integration. Further, we replicated previous work
demonstrating impairments in baseline decision-making as a func-
tion of self-reported OCD symptoms, and found that information
transfer effects specifically due to implicit memory were reduced,
offering computational insight into checking behavior.

decision-making | obsessive–compulsive disorder | drift diffusion model

People frequently reconsider their decisions. For example, you
may engage in a long deliberation about whether or not to

take a job in another city, vacillating between the two options
before settling on an answer. However, the next day may bring
renewed doubt and a second decision episode between the same
two options. Such doubt and rechecking may also sometimes
take a pathological form. This is most evidently seen in the
context of obsessive–compulsive disorder (OCD), which is often
characterized by patients revisiting and redeliberating previously
settled decisions even about relatively mundane and unambigu-
ous everyday topics, like whether a door is locked or their stove
has been turned off (1–3).

Surprisingly, although it is ubiquitous repeated decision-
making has received relatively little attention in laboratory stud-
ies and computational modeling work. Instead, attention has
focused almost exclusively on redeliberation within the context of
single decision episodes. In a typical experiment from this line of
work, participants are presented with a decision and are required
to give their answer using a continuous response modality, for
example a mouse or a physical handle like the one employed
in motor control experiments (4–7). Decisions are registered by
moving the device toward one of two or more decision points.
The data from these studies show that while the majority of
trials typically begin and end in the direction of a single deci-
sion point, on some trials participants change their mind in the
middle of their response and start moving toward one option
but ultimately choose another. Computational models describing
such data have come from the broader class of evidence inte-
gration models, in which momentary evidence for and against
each option is integrated until a threshold is reached, at which
point the option with the largest amount of relative evidence
is selected. In order to explain data on continued deliberation
and changes of mind, these models make the assumption that a
response begins when the evidence reaches an initial threshold,
but the evidence integration process also continues and the evi-
dence for another option may subsequently reach threshold (4,

6, 7). As stated at the outset, however, this work has so far been
limited to single individual decision episodes.

In addition, and perhaps partially resulting from a scarcity
of basic research on continued deliberation across decisions,
little is known about the computational properties by which
checking manifests in OCD. Previous work has suggested a num-
ber of (potentially nonindependent) possible global reasons for
excessive checking, including perfectionism (8), intolerance of
uncertainty (9), inflated responsibility (10), positive beliefs about
worry (11), and an overestimation of threat (12). However, it is
unclear specifically how checking manifests computationally. In
fact, it is not known which aspects of repeated decision-making
are impacted even in a broad sense. Two categories of ques-
tions are of interest with regard to repeated decisions generally,
including outside the scope of OCD: when and how individuals
choose to revisit decisions and how information is transferred
between decisions when they are repeated. With respect to OCD,
it is not known whether one or both of these aspects of infor-
mation processing are impacted. We developed a task to study
continued deliberation across decision episodes in general and
to understand how this process varies with individual differ-
ences in subclinical OCD symptom severity in the population.
Our focus and scope of the current paper is devoted to ques-
tions related to the transfer of information. However, as will
be seen, the experimental and modeling framework are general
enough to pursue a number of follow-up questions, including
questions related to meta–decision-making, which have clear
importance.
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Real-life decisions are often repeated. Whether considering
taking a new job, or doing something mundane like check-
ing if the stove is off, people frequently revisit decisions.
This mode of behavior takes a particularly pathological form
in obsessive–compulsive disorder (OCD). Surprisingly, little is
known about how information is transferred across decisions,
and whether and how such transfer is disrupted in OCD.
Data from a repeated decision-making task and computational
modeling revealed that different memory systems separately
biased repeated decisions toward previous choices by chang-
ing how people weigh evidence. Transfer specifically driven
by implicit memory was reduced in individuals with higher
levels of OCD symptoms on top of other baseline decision-
making deficits, offering computational insight into checking
behavior.
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In developing the paradigm we chose the dot motion percep-
tual decision-making task as the baseline decision task which was
to be repeated (13–15). In this task, participants are shown an
array of dots, some percentage of which consistently move in the
same direction (e.g., left or right) while others appear at ran-
dom. The goal is to determine the average direction in which the
coherent dots are moving. Difficulty can be modulated from triv-
ial to chance performance by changing the percentage of dots
undergoing coherent motion. We chose this as the baseline task
for a number of reasons. First, it is well-studied and has shed light
not only on motion and visual perception but on decision-making
more generally, for which it has served as a fruitful laboratory
model (13–16). As a result, its computational properties are also
well-established: Decision-making in this task is well-explained
by the drift-diffusion model (13, 15, 17), a particularly tractable
exemplar from the class of evidence integration models which is
relatively easy to fit and which can be implemented within a mul-
tilevel framework to improve parameter recovery (18–20). This
also aligned within a more general goal we had for developing a
paradigm that was complex enough to ask a wide array of ques-
tions about continued deliberation across decisions but simple
enough to reliably model and recover parameter values at the
individual subject level without onerously long testing sessions.
Finally, numerous studies have documented impairments within
single decision episodes in this task both in patients with OCD
and in subclinical individuals high on the OCD spectrum (21–24)
(but see also ref. 25), making it an obvious choice for extend-
ing the investigation of individual differences across repeated
decision episodes.

The drift-diffusion model describes decisions with two possi-
ble outcomes, such as in the present context where the decision
is whether motion is left- or rightward. A schematic illustration
of the basic form of the model is shown in Fig. 1. The state of
the decision, or the evidence or preference for one option versus
the other at a particular point in time, evolves in a noisy fashion
over the course of the decision. It has an average velocity (drift
rate) represented by a free parameter that can be inferred from
an individual’s behavioral data, but the trajectory is also subject

Fig. 1. Schematic illustration of the basic form of the drift-diffusion model,
which describes decisions with two possible outcomes. The state of the deci-
sion, representing the preference for one outcome versus the other, follows
a directed but noisy trajectory. The two outcomes are represented by two
decision boundaries, and a decision is made when the preference state
reaches one of them. Bias for one outcome versus the other before see-
ing the stimulus can be incorporated by changing the starting position of
the preference state. A separate parameter also captures nondecision time
during the trial, such as detecting the stimulus and responding.

to Gaussian noise. In the dot motion task, drift rate represents
the amount of moment-by-moment evidence extracted from the
stimulus in the service of decision-making. Although drift rate is
generally stimulus-driven, it can also be affected by external fac-
tors such as attention (26, 27). The two possible outcomes are
represented in the model by decision boundaries that flank the
preference state on both ends, and the distance between them is
captured by another free parameter. A decision is made when the
preference reaches one of these boundaries. Initial bias in prefer-
ence, before the stimulus is seen, can be incorporated by moving
the starting position to be closer to one of the boundaries. The
starting preference is captured by a third free parameter. The
drift-diffusion model has been studied in a wide range of contexts
and domains including the dot motion task and has converg-
ing support from both behavioral and neural data (13, 15, 17,
28–30). Previous work has shown specifically that drift rate is
impaired (reduced) both in patients with OCD and in subclini-
cal individuals with high levels of self-reported OCD symptoms
(21–24). Moreover, impairments are larger for easier decisions
(21, 24). Although one might intuitively also expect to see dif-
ferences in boundary separation, with boundaries placed further
apart (i.e., decisions being more deliberate and less impulsive),
this has not been borne out by the now ample data on this task.
We return to this point in Discussion in the context of the
present work.

In the task (Fig. 2), participants made dot motion decisions
that were tagged with markers (words) that individually iden-
tified each decision trial. Later, they were asked about the
choice they made on the trial associated with a marker and
were then asked to repeat the same decision a second time.
We used the drift-diffusion model and our task to investigate
four sets of questions. First, we asked whether participants’
memory of their first decision episode affected the second deci-
sion by changing the initial bias in preference, the drift rate,
or both, regardless of individual differences. For example, the
starting preference may be placed close(r) to the response
boundary representing the choice made during the first deci-
sion. A small amount of additional confirmatory evidence can
then push the decision over threshold. In contrast, a change in
drift rate would mean a more persistent and continuous bias
entering into the deliberation process. Second, we asked whether
the actual choices participants made during the first decision
episode affected the second decision’s initial bias in prefer-
ence and/or drift rate separately from the effects due to explicit
memory retrieval, which sometimes resulted in retrieving the
incorrect choice.

Third, we asked whether we could replicate previous work
showing that drift rate during an initial decision negatively cor-
relates with OCD symptom severity (21–24), whether this also
extends to differences in baseline drift rate during a repeated
decision, and whether similar deficits can be seen during the
course of memory retrieval when recalling a previous deci-
sion. Notably, the drift-diffusion model can account for memory
retrieval using the same set of mechanisms (17, 31), allowing
us to ask whether symptoms track similar computational deficits
across cognitive domains. Given the above prior work with the
dot motion task and single individual decisions, we expected
baseline drift rate to be reduced as a function of OCD in both
decision episodes in our task, with larger deficits for easier
decisions (higher coherence trials). In addition, given previous
reports of memory for actions also being impaired (32, 33), we
expected that drift rate for the memory retrieval would also be
reduced.

Finally, we asked whether the transfer of information from
the first decision to the second decision varied with OCD symp-
tom severity, and if so how this manifested. Paralleling the main
effects, how the starting preference and/or drift rate are mod-
ulated by either or both explicit and implicit memory may be
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Fig. 2. Order of events within trials that appear during the first and sec-
ond half of each block. During the first half, trials begin with a fixation
cross, followed by a dot motion decision, and then a word that uniquely
tags the trial. During the second half, trials begin with a word first and par-
ticipants have to recall the decision they made on the corresponding trial
during the first half. This is followed by a fixation cross and a dot motion
decision with the same level of coherence and direction of motion as the
corresponding trial.

affected. Although we did not have a strong a priori hypothe-
sis about a particular failure mode, reductions in the carryover
by drift rate may perhaps be expected to be more likely given
the prior work on reductions in drift rate in single dot motion
decisions in high-OC individuals.

Results
The repeated decision-making task was divided into blocks of
six trials. In the first half of each block (the first three trials),
participants performed dot motion decision trials at three dif-
ferent levels of coherence. Each decision was followed by a
word that uniquely identified the trial. In the second half of the
block, the same three trials were presented in random order.
However, these trials began with the identifying word. Upon see-
ing the word, participants had to recall their choice from the
first decision episode. They were then presented with the same
dot motion stimulus (the same level of coherence and direction

of motion) a second time. If they were confident about their
decision, they could select the same direction right away. Oth-
erwise, they could integrate additional evidence. The order of
events in each block half can be seen in Fig. 2. Participants also
completed the Padua Inventory (34), a widely used measure of
OCD symptoms. We ran two experiments, the second to repli-
cate the results of the first and to establish the specificity of the
OCD-related effects while controlling for symptoms of anxiety
and depression, cognitive ability, and several demographic fac-
tors (Methods). The results from both experiments are presented
in parallel.

Basic Effects. Fig. 3 A and B displays the basic behavioral
results—accuracy and reaction time—for each decision episode.
There was a clear effect of coherence (Greenhouse–Geisser-
corrected; dataset 1: F (1.47, 255.07)= 106.17,P =1.20×
10−27, ε=0.73; dataset 2: F (1.48, 312.85)= 50.76,P =8.60×
10−16, ε=0.74), but not decision episode (dataset 1: F (1, 174)=
0.9,P =3.5× 10−1; dataset 2: F (1, 212) = 0.01, P = 9.3 ×
10−1) on accuracy. In contrast, reaction time was significantly
modulated by both coherence (Greenhouse–Geisser-corrected;
dataset 1: F (1.16, 201.11)=100.23,P =1.90× 10−21, ε=0.58;
dataset 2: F (1.3, 275.46)= 59.27,P =3.90× 10−16, ε=0.65)
and decision episode (dataset 1: F (1, 174)= 134.28,P =2.20×
10−23; dataset 2: F (1, 212)= 59.42,P =4.90× 10−13), with
the second decision episode being substantially faster. The
interaction of coherence and decision episode on reaction time
was also significant (Greenhouse–Geisser-corrected; dataset 1:
F (1.38, 240.09)=48.83,P =3.50× 10−14, ε=0.69; dataset 2:
F (1.64, 348.23)=21.15,P =3.40× 10−8, ε=0.82). Although
reaction times were faster during the second decision episode,
they were still substantial (1 to 1.5 s; Fig. 3). SI Appendix,
Table S1 displays the pairwise contrasts.

Fig. 3 C and D displays the accuracy and reaction time for
the memory retrieval—the point in time during the second
half of each block when participants saw a word and had to
recall the decision they previously made on the correspond-
ing trial. There was no evidence that coherence affected either
accuracy (dataset 1: F (2, 348)= 0.04,P =9.6× 10−1; dataset 2:
F (2, 424)= 0.09,P =9.1× 10−1) or reaction time (dataset 1:

A B

C D

Fig. 3. Raw behavioral data. (A) Accuracy for each difficulty level and decision episode. (B) Reaction time for each difficulty level and decision episode. (C)
Accuracy for the memory retrieval prior to the second decision episode for each decision difficulty level. (D) Reaction time for the memory retrieval prior to
the second decision episode for each decision difficulty level.
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F (2, 348)= 0.1,P =9.1× 10−1; dataset 2: F (2, 422)= 0.17,
P =8.4× 10−1), which was not surprising given that participants
were instructed to try to remember all of their decisions regard-
less of the difficulty or whether they thought the decision was
correct.

Taken together, these data suggest that, on average, partic-
ipants remember their choices across trials but also integrate
additional evidence during the second decision. In order to more
precisely understand the computational properties of each deci-
sion episode and the memory retrieval, and how information
flows from the first decision episode to the second, we fit a set of
drift-diffusion processes: one for each decision and one for the
memory retrieval. Models were fit using a multilevel Bayesian
framework (Methods). In reporting the results of this analysis,
we present the full marginal posterior for the parameters of
interest. As is often customary, we also mark the median and
the central 95% credible intervals and treat a result as signifi-
cant if a credible interval excludes the critical value of interest
(e.g., 0). These detailed statistics are presented in the figures
where they can be readily accessed instead of being buried within
the text.

Fig. 4 displays the base drift rate and boundary separa-
tion for each decision episode and the memory retrieval. SI
Appendix, Fig. S1 displays the difference between conditions
for these parameters. As expected, drift rate was higher for
medium- than for low-coherence trials and for high- compared
to medium-coherence trials for the first decision episode. Base
drift rate, separate from transfer effects, was also higher for
the second decision episode for medium-coherence compared
to low-coherence trials and for high-coherence compared to
medium-coherence trials. Boundary separation effects went in
the opposite direction for the first decision episode, with lower
boundaries for medium- versus low-coherence trials and high
versus medium trials. The same was true for the second decision
episode, although the effects were weaker. Neither drift rate nor
boundary separation differed across conditions for the memory
retrieval, which again was not surprising given that participants
were instructed to try to remember all of their decisions with
equal fidelity.

Transfer Effects. Fig. 5A displays the boost to drift rate during
the second decision episode resulting from 1) the immediately
preceding memory retrieval and 2) the choice selected during
the first decision episode, that is, a form of implicit memory.
Although participants generally had a good recollection of the
action they chose during the first decision (accuracy was near
85% in the first dataset and near 80% in the second; Fig. 3C),
because recall was not perfect we were able to disentangle the
effects of decision and explicit memory. The figure shows the
effect on drift rate in the direction dictated by each form of
memory. For example, if the participant recalled “left” when
seeing the word, then drift rate would be biased left by the cor-
responding amount. Similarly, if the participant selected “left”
during the first decision episode, then drift rate would addition-
ally be biased left by that corresponding amount. SI Appendix,
Fig. S2A displays the difference between conditions for these
parameters. Explicit memory provided a significant and largely
similar boost to drift rate regardless of coherence level, with a
small trend toward being larger for low coherence levels. The
boost provided by implicit memory was also significant across the
board but in contrast was much more clearly graded and larger
for higher-coherence trials.

SI Appendix, Fig. S3A displays the bias dictated by each type
of memory on the starting preference of the decision process.
Explicit memory had a statistically significant effect on starting
preference at all coherence levels, but effect sizes were rela-
tively small. Implicit memory had no effect on starting preference
at any coherence level. In summary, both explicit and implicit
memory provided substantial boosts to drift rate in the corre-
sponding directions across all coherence levels, with the effect
clearly varying by coherence level for implicit memory but not
explicit memory. However, effects on starting preference were
small to nonexistent.

Differences in Baseline Decision-Making and Transfer Effects as a
Function of OCD Symptoms. Fig. 6 displays the regressors govern-
ing the relationship between baseline drift rate and boundary
separation and OCD symptom severity for each decision episode
and the memory retrieval. SI Appendix, Fig. S4 displays the

A B C

D E F

Fig. 4. Marginal posterior distributions of drift rate and boundary separation during the two decision episodes and the memory retrieval for each level of
decision difficulty. The dot and bars represent the median and central 95% credible interval. (A) Drift rate during the first decision episode. (B) Drift rate
during the memory retrieval. (C) Baseline drift rate during the second decision episode separate from transfer effects. (D) Boundary separation during the
first decision episode. (E) Boundary separation during the memory retrieval. (F) Boundary separation during the second decision episode.

4 of 9 | PNAS
https://doi.org/10.1073/pnas.2014271118

Solway et al.
Transfer of information across repeated decisions in general and in obsessive–compulsive disorder

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2014271118/-/DCSupplemental


www.manaraa.com

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S
N

EU
RO

SC
IE

N
CE

A B

Fig. 5. Marginal posterior distributions of transfer effects driven by changes in drift rate. The dot and bars represent the median and central 95% credible
interval. Levels are decision difficulty. (A) Bias in drift rate during the second decision episode in the direction of the choice actually selected during the first
decision episode and the choice participants recalled making. (B) Additional change in the direction of each as a function of OCD symptom severity.

differences between conditions. In both datasets, we replicated
previous work showing that drift rate during a new decision (the
first decision episode) is reduced as a function of OCD severity,
and that this effect is larger for easier trials. Similar deficits were
also found for the second decision episode, separate from any
transfer effects, although here medium- and high-coherence tri-
als were affected to a similar degree. Deficits in drift rate were
also evident for the memory retrieval, equally affecting retrieval
across all coherence levels. These results provide a quantitative
account of deficits in perceptual decision-making and memory
for action as a function of OCD using a common computational
mechanism in the same participants. There was evidence that
boundary separation for both decision episodes was reduced as a
function of OCD severity in the first but not the second dataset.
In contrast, there was evidence that boundary separation for the
memory retrieval increased slightly as a function of OCD severity
in the second but not the first dataset. These results were not sur-
prising given that boundary effects have also been inconsistent in
previous work, a point we return to in Discussion.

Previous work with the dot motion task and OCD either did
not control for anxiety and depression or attempted to equate
anxiety and depression between OCD and control groups. Our
second dataset, which includes continuous measures of symp-
toms of OCD and anxiety and depression allowed us to look
at the effects of each in the same sample. SI Appendix, Fig. S5
displays the relationship between baseline drift rate and bound-
ary separation and symptoms of anxiety and depression, and SI
Appendix, Fig. S6 displays the relative effects of OCD versus anx-
iety and depression. There were no consistent effects on drift
rate for either decision episode or the memory retrieval. Simi-
lar to symptoms of OCD in the first dataset, symptoms of anxiety
and depression were associated with decreased boundary sepa-
ration in both decision episodes across all conditions, potentially
explaining why this relationship was evident with OCD when anx-
iety and depression were not controlled for. The negative effects
of OCD on drift rate were significantly larger than the effects
of anxiety and depression for both decision episodes and for the
memory retrieval across all conditions (SI Appendix, Fig. S6).

A B C

D E F

Fig. 6. Marginal posterior distributions of the relationships between OCD symptom severity and drift rate and boundary separation. The dot and bars
represent the median and central 95% credible interval. Levels are decision difficulty. (A) Drift rate during the first decision episode. (B) Drift rate during the
memory retrieval. (C) Baseline drift rate during the second decision episode separate from transfer effects. (D) Boundary separation during the first decision
episode. (E) Boundary separation during the memory retrieval. (F) Boundary separation during the second decision episode.
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Fig. 5B displays the regressors governing the interaction
between OCD severity and the effects of explicit and implicit
memory on drift rate during the second decision episode. SI
Appendix, Fig. S2B displays the differences between conditions.
The boost to drift rate due to implicit memory was smaller as
a function of OCD severity, and similar to baseline effects this
reduction was larger for easier conditions. The boost to drift
rate due to explicit memory was also smaller as a function of
OCD in the first dataset, but this did not replicate in the sec-
ond dataset. The lack of effect was unchanged when including
only OCD in the model and excluding anxiety and depression
and other control variables. Thus, this finding was not due to
suppression by other variables. SI Appendix, Fig. S7 displays
the interaction between drift transfer effects and symptoms of
anxiety and depression. The interaction was not significant with
either memory system in any condition (SI Appendix, Fig. S7A).
The difference between the interaction with implicit memory was
larger for OCD compared to anxiety and depression for the high-
coherence condition, but the smaller interaction with OCD for
the medium-coherence condition was not significantly different
from the interaction with anxiety and depression (SI Appendix,
Fig. S7B).

SI Appendix, Fig. S3B displays the interaction between OCD
severity and the effects of explicit and implicit memory on the
starting preference for the second decision episode. There were
no consistent interactions across conditions and datasets with
either type of memory. SI Appendix, Fig. S8 displays the anal-
ogous information for symptoms of anxiety and depression, also
showing no consistent interactions with either type of memory.

Second decision episodes with reaction times faster than
250 ms were excluded from the model-based analysis under the
assumption that such very fast trials did not involve new evidence
integration (Methods). OCD may be related to a general dif-
ference in whether additional information is sought at all. We
tested whether the number of excluded trials correlated with
OCD severity but found no evidence of such a relationship in
either dataset in any condition (SI Appendix, Table S2). Finally,
the SI Appendix, SI Results discusses a control analysis for rul-
ing out the effects of attention in information transfer, both in
general and in relation to OCD.

Discussion
We developed a task to study the transfer of information across
repeated decision episodes. Our goal was to design a task that
was simple enough to reliably model even when limited data may
be available for each participant but complex enough to study
a wide range of features of repeated choice. Participants made
perceptual dot motion decisions, judging the average net direc-
tion of motion of a noisy array of moving dots. These decisions
were tagged with unique words that identified both the choice
made and the decision problem (motion coherence and direc-
tion). Word cues were subsequently presented a second time,
followed by a dot motion stimulus with the same properties. Par-
ticipants had to both recall their previous choice and make a
decision a second time, which they could do with as much or as
little additional evidence as they wanted. Using a drift-diffusion
framework, we tested several hypotheses related both to gen-
eral information transfer and whether information transfer and
baseline memory and decision-making differed as a function of
symptoms of OCD.

We found that both the actual choice made during the first
decision episode (implicit memory) and the choice people explic-
itly remembered making influenced the subsequent decision by
biasing drift rate in the corresponding direction. Bias in the start-
ing preference was small for explicit memory and nonexistent for
implicit memory by comparison. From a Bayesian perspective,
a change in starting preference corresponds to a change in the
prior for one option versus the other, while a change in drift rate

corresponds to a change in the moment-by-moment log likeli-
hood ratio of the net direction of motion, which is integrated over
time during the course of a decision (35–37). Modifying the like-
lihood to be less reflective of reality certainly seems counterintu-
itive at first blush. However, this finding is in line with previous
work reporting changes in drift rate corresponding to changes in
the prior distribution of the experimental stimulus class and the
corresponding correct response (38, 39). As a potential explana-
tion for this effect within the context of single decisions, it has
been suggested that changes in drift rate that track changes in
prior probability may in fact be necessary (though in addition to
changes in starting preference) to achieve optimal long-term per-
formance when trial difficulty varies across the experiment (40),
although this view has subsequently been challenged (41). Nev-
ertheless, better understanding optimal decision-making in the
present context is a direction worth pursuing. This result may
also reflect trial-by-trial changes in the drift criterion (38) con-
veyed by memory of the first decision. Given a particular prior,
participants may lower the threshold for the perceptual evidence
necessary for it to be classified as corresponding to the prior
direction of motion.

The magnitude of the effect of implicit memory differed by
decision difficulty, being larger for easier decisions. In contrast,
the effects of explicit memory were relatively similar across
difficulty levels. Such differences raise an interesting conjec-
ture regarding another aspect of the representational nature of
transfer effects: Transfer effects would be expected to vary by
difficulty if they were based on a memory of the stimulus itself.
In contrast, transfer effects based on a memory of the decision
would not. The current design does not allow us to ask directly
about which representation is employed by each memory system,
but this is an obvious direction for future work.

Turning to individual differences, we also found a number of
consistent differences in both baseline memory and decision-
making and transfer effects as a function of OCD symptom
severity. First, we replicated previous work showing that base-
line drift rate (for the first decision episode) is reduced (21–24).
A reduction in drift rate was also evident during the second deci-
sion episode, independent of any transfer effects. Moreover, a
reduction in drift rate was in addition evident during the mem-
ory retrieval of the previous decision, demonstrating that similar
deficits exist across cognitive domains. Like decision-making,
memory retrieval also involves the integration of “evidence,” or
what might more intuitively be considered signal strength, here
for and against different memories or the existence or absence
of a memory rather than different options (17, 31, 42). The fact
that there is evidence for similar computational deficits across
cognitive domains raises the possibility that a common underly-
ing low-level neural mechanism may be at fault. It may relate to
the general representation of moment-by-moment evidence, the
flow of such evidence to downstream integrators, or the ability
of the integrator regions themselves to properly account for the
evidence they receive. These deficits were all specific to OCD
relative to anxiety and depression.

Potentially speaking to a common mechanism driving deficits,
reductions in drift rate as a function of OCD severity were
also observed in transfer effects across decision episodes due
to implicit memory. A limitation of the current design is that
it is not possible to tell whether differences in transfer effects
reflect deficits in the transfer process, whether baseline deficits
from the first decision episode are carried over, or both. It is
tempting to attempt to answer this question by comparing the
magnitude of the effect of OCD on transfer effects with the
magnitude of the deficits during the first decision. If the former
is larger, this might serve as evidence that there are additional
deficits that ride on top of the baseline effects. However, lacking
a more specific mechanistic model of how transfer works, such a
comparison is difficult to interpret. Indeed, the magnitude of the
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reduction in transfer effects is actually smaller than the deficits
during the first decision episode (compare Figs. 5B and 6A). This
does not mean, however, that transferred deficits are somehow
“fixed” along the way. Understanding how differences in trans-
fer come about requires a more detailed mechanistic model that
can explain how decisions are stored in memory, how they are
retrieved, and how they are weighted to influence later decisions.

Differences related to implicit memory transfer were spe-
cific to OCD relative to anxiety and depression for the high-
coherence condition only, which had the largest OCD effect. This
pattern where drift rate effects were larger for easier conditions
was a common theme as discussed above, lending additional
support for this finding. In contrast, for the medium-coherence
condition, although the effect of OCD was significant and the
effect of anxiety and depression was not significant the difference
between them was not significant. Given that the OCD effect
was small to begin with, it remains to be determined whether
the lack of specificity for harder trials is due to sampling error or
reflective of a mechanistic difference.

The current work also has other limitations, with the exper-
iment lacking at least two features possessed by real-world
checking scenarios. First, real mistakes, if they were to occur,
could in theory result in more drastic consequences under a
worst-case scenario. A stove left on could cause a fire, a door
left unlocked could make it easier for a burglar to enter, whereas
misjudging the direction of motion of a collection of dots in a
computer-based task would at worst keep the participant from
earning a point for performance. Relatedly, mistakes in the real-
world often result in negative consequences rather than simply
the withholding of reward. Although it is not possible to recreate
the possibility of similarly devastating effects in an experimen-
tal setting, a fruitful avenue for future work is to test how
changes in incentive structure, both in the form of highly neg-
ative and highly positive (and thus potentially high opportunity
cost) outcomes, affect information processing. Second, the cur-
rent experiment does not allow the participant to freely choose
whether to repeat the decision after seeing the cue and is limited
to two episodes per decision. These features were chosen pur-
posefully in order to increase power and precision for detecting
and quantifying transfer effects, which was the goal of the present
work. However, the task can be readily modified to allow partic-
ipants to choose whether to repeat a trial and to do so multiple
times throughout the experiment for each decision. Looking at
the interaction between repetitions and incentive manipulations
(e.g., trials with potentially highly negative outcomes) would be
especially interesting.

Another important avenue of extension is to understand how
repeated decision-making interacts with decision and memory
confidence and metacognition. Specifically, little is known about
how confidence drives the meta-decision about whether or not
to revisit a previous decision, and how much information from a
previous decision episode to take on board. Two aspects of deci-
sion and memory confidence may influence repeated decision-
making: one’s overall level of confidence and how good one is
at correctly mapping confidence to accuracy (i.e., having high
confidence in responses that are objectively accurate and low
confidence in responses that are inaccurate). Previous studies
have suggested that individuals with OCD have reduced confi-
dence in their memory (43, 44) and an impairment in mapping
decision confidence in the same dot motion task used here (23).
If one does not trust their memory or decision-making ability as a
result of either type of deficit, this could lead them to revisit deci-
sions more often and carry over less information from previous
decision episodes.

Finally, we found that individuals with more severe OCD
symptoms had a smaller boundary separation in the first dataset,
but this effect could be explained by symptoms of anxiety and
depression and boundary separation had no relationship to OCD

in the second dataset. Unlike differences in drift rate, and seem-
ingly counter to the perseverative nature of OCD, the data on
OCD-related differences in boundary separation in perceptual
decision-making have been mixed, with two studies reporting
that patients place decision boundaries further apart (21, 25)
and three studies reporting no relationship between boundary
separation and OCD status or subclinical severity (22–24). Pre-
vious work did not take anxiety and depression into account in
this context or attempt to control for them either by excluding
patients with comorbidities or by equating anxiety and depres-
sion between patient and control groups, both of which can
be achieved imperfectly at best. Our data suggest that anxi-
ety and depression may be an important covariate in boundary
placement during perceptual decision-making.

Although consistent with prior data, participants with higher
OCD severity scores were not more perseverative within individ-
ual decisions and they were in a sense more deliberative across
decision episodes, transferring less information from the first to
the second decision. Ascertaining where one decision episode
begins and another ends can be difficult in the wild. For exam-
ple, an individual stuck checking their stove may be undergoing
a single elongated decision, or a series of multiple repeated
decisions which are continuously spawned. Our task provides
a controlled environment for delineating the components of
decision-making that drive deliberation on both short and long
time scales, and our data suggest that differences related to the
transfer of information between decisions, rather than caution
within individual decision episodes, may play an important role
in OCD.

To conclude, our task revealed a number of findings regard-
ing how people make repeated decisions, and how both baseline
processing and information transfer differs as a function of OCD
symptom severity. It also raises a number of new research ques-
tions, many of which can be readily pursued using the same basic
framework.

Methods
Participants. All experimental procedures were approved by the Institu-
tional Review Board at the University of Maryland. Electronic informed
consent was obtained in accordance with the approved procedures. Data
were collected on Amazon Mechanical Turk from 212 participants in Exper-
iment 1 and 324 participants in Experiment 2, with the following exclusion
criteria applied. First, following the instructions and a practice round, par-
ticipants completed a multiple-choice quiz to gauge their understanding of
the task. Participants that failed to answer the quiz questions were not able
to continue and are not included in the above count. Second, the Padua
Inventory included a catch question which asked participants to select “A
little” for that item. Participants that did not do so were excluded from
analysis. Finally, trial sets (both the first and second decisions and the mem-
ory retrieval) where the reaction time for the first decision or the memory
retrieval was faster than 250 ms or slower than 10 s were removed. Trial sets
where the reaction time for the second decision was slower than 10 s were
similarly removed. Participants could but did not have to integrate addi-
tional evidence during the second decision in order to do well (discussed
below and in the main text) and therefore no minimum reaction-time exclu-
sion criterion was applied to the second decision episode. Participants that
did not have at least 25 trials remaining for each of the three coherence
levels (discussed below) were excluded entirely.

This left 175 participants for analysis in Experiment 1 and 213 participants
in Experiment 2. As detailed in the main text, as a basic sanity check we
replicated both the basic accuracy, reaction time, and drift rate effects as
well as the negative relationship between drift rate and OCD seen in the
dot motion task in previous studies (15, 21–24). Although we generally refer
to the population we sampled as being “subclinical” throughout, it is of
course possible some individuals on the high end of the Padua Inventory
may meet clinical criteria.

Repeated Decision-Making Task. Participants completed 62 blocks of trials,
each block divided into two parts with three trials in the first half and three
paired trials in the second half. The structure of the trials from each half is
displayed in Fig. 2. In trials that appeared during the first half, participants
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saw a fixation cross (1,000 ms), followed by a dot motion decision (with no
time limit), and finally a word that uniquely identified the trial (2,000 ms).
Words were chosen randomly without replacement across the experiment
for each participant. The three trials included one of each of 7.5, 20, and
45% coherence levels in random order. The net average direction of motion
(left or right) was randomly chosen for each trial with equal probability.
The three trials were randomly rearranged and repeated during the sec-
ond half of the block, but with a different ordering of events within each
trial (Fig. 2). Each trial started with the word, and participants had to recall
the decision they made on the associated trial in the first half of the block
(with no time limit). This was followed by the fixation cross (1,000 ms) and
finally the dot motion decision (again with no time limit). The coherence
level and direction of motion were the same as on the corresponding trial
in the first half of the block. If participants were sure they made the correct
decision the first time, and were also sure they correctly remembered their
choice, they could respond without processing the stimulus at all during the
second decision episode and still do well. The task was programmed using
the jsPsych library (45), using the RDK plugin for the dot motion stimulus
with 30 dots.

Psychiatric Symptom Measures and Demographic Information. We measured
self-reported OCD severity using the Padua Inventory, a widely used psycho-
metric scale (34). In Experiment 2, we tested the specificity of OCD-related
effects against symptoms of anxiety and depression measured using the
scale derived by Gillan et al. (46) (see also ref. 47). Gillan et al. (46) con-
ducted a factor analysis of a large number of existing questionnaire items
that crossed traditional Diagnostic and Statistical Manual boundaries and
derived a three-factor symptom structure that included a transdiagnostic
compulsive behavior and intrusive thought factor (of which OCD was a part),
trait anxiety and depression, and social anxiety. Although our focus in this
work was on OCD and not a transdiagnostic OC factor, we used their same
anxiety and depression measure to test for the specificity of our effects. Par-
ticipants completed items that had a factor loading of at least 0.4 in the
analysis of Gillan et al. (46). To derive factor scores, we regressed each par-
ticipant’s item scores on the items’ factor loadings. In Experiment 2 we also
controlled for cognitive ability measured with Form A of the short form
of Raven’s standard progressive matrices (48), using the Poisson regression
model of Bilker et al. (48) to convert the short-form item scores to full
scores. Finally, Experiment 2 controlled for sex, age, years of education,
and income.

Model Fitting. We fit a Bayesian multilevel (hierarchical) version of the drift-
diffusion model (Wiener process with drift) implemented in the statistical
programming language Stan (Stan Development Team). Inference was per-
formed via Markov chain Monte Carlo using the No-U-Turn sampler. Proper
mixing was assessed both quantitatively, computing the Gelman–Rubin R̂
statistic and ensuring it was less than 1.1 for all variables and qualitatively
based on traceplots. We ran four chains with 4,000 samples each, using the
first 1,000 as warm-up.

For the first decision episode, drift rate for subject s, coherence c, and
trial t with z-scored Padua Inventory total paduas was set as

drift1
s,c,t = drift1

c + drift1
s +σ

1
drift,trial · ε

1
t +

drift1
c,padua · paduas.

drift1
c , drift1

s , σ1
drift,trial, and drift1

c,padua were free parameters. ε1
t was a per-

trial random variable with a N(0, 1) prior defining the deflection from the
subject mean for the current trial, modeling across-trial variability. paduas

was the z-scored Padua Inventory score. The drift rate for the memory
retrieval (driftr ) was equivalently defined, as was the boundary separa-
tion for the first decision episode and the memory retrieval (bound1 and
boundr ), although the boundaries did not vary across trials. The starting
point for both was fixed to be the midpoint between the two boundaries.
In Experiment 2, there were additional regressors equivalent to the Padua
regressors for anxiety and depression severity, Raven’s progressive matrices
score, sex (binary variable with 0 = female and 1 = male), age, years of
education, and income (all z-scored except sex). For income, 11 out of 213
participants had values that although valid appeared unlikely compared to
the rest: greater than 0 but less than $100 (perhaps mistaking the input
field to be in thousands of dollars rather than dollars, but we cannot be
sure), $500,000, and $750,000. Income for these participants was replaced
by the mean income of the remaining participants.

The boundary separation for the second decision episode (bound2) was
also defined as above. The drift rate and the starting position for the sec-

ond decision episode had additional regression terms to account for transfer
effects. Rather than fitting the effect of the first decision episode (implicit
memory) and the memory retrieval directly, we modeled the effect of a
matching trial (a trial where the choice made during first decision episode
matched the choice the participant recalled making) and a nonmatching
trial and then converted these to effects of choice and memory as described
below. This reduced correlation in the posterior that was sampled for more
efficient Markov chain Monte Carlo sampling. Specifically, drift rate for the
second decision episode was defined as

drift2
s,c,t = drift2

c + drift2
s +σ

2
drift,trial · ε

2
t +

drift2
c,padua · paduas+

( drift2
c,match + drift2

s,match+

drift2
c,padua,match · paduas) ·match+

( drift2
c,nonmatch + drift2

s,nonmatch+

drift2
c,padua,nonmatch · paduas) · nonmatch.

We defined the upper boundary to be the correct response (left or right) on
each trial and the lower boundary to be the incorrect response (the choice
is arbitrary and the two can be swapped). Further, match was set to 0 when
the first decision and memory retrieval did not match, 1 when they matched
and the first decision was correct, and −1 when they matched and the first
decision was incorrect. Likewise, nonmatch was set to 0 when the first deci-
sion and memory retrieval matched, 1 when they did not match and the
first decision was correct, and −1 when they did not match and the first
decision was incorrect. The starting preference (start2

s,c,t) was equivalently
defined but was then also transformed through a logistic function to the
0 (lower boundary) to 1 (upper boundary) range. This allows the starting
preference to be defined independent of the boundary separation. Experi-
ment 2 included additional regressors equivalent to the Padua regressors as
described above.

We subsequently transformed the match and nonmatch effects to effects
of the first decision episode and the memory retrieval as follows, using drift2

c
as an example:

drift2
c,choice1 = (drift2

c,match + drift2
c,nonmatch)/2,

and
drift2

c,memory = (drift2
c,match− drift2

c,nonmatch)/2.

This relationship can be more intuitively understood from the opposite
direction. drift2

c,match = drift2
c,choice1 + drift2

c,memory , that is, when there is a
match, this is the total amount by which drift rate is biased by both
types of memory in the same matching direction. Likewise drift2

c,nonmatch =

drift2
c,choice1− drift2

c,memory , that is, when there is not a match, this is the
amount by which drift rate is biased in the direction of implicit memory
after subtracting the effect of explicit memory, which acts in the opposite
direction.

For parameters defined for each coherence level (e.g., drift1
c ) we used the

low-coherence condition as the baseline and fit additive terms (referred to
as c′ below) for the remaining two conditions. This also reduced correlation
in the posterior to aid sampling. We used very broad, weakly informative
priors for all parameters. The prior for each of drift1

c=1, drift1
c′ , drift1

c=1,padua,

drift1
c′ ,padua, driftr

c=1, driftr
c′ , driftr

c=1,padua, driftr
c′ ,padua, drift2

c=1, drift2
c′ ,

drift2
c=1,padua, drift2

c′ ,padua, drift2
c=1,match, drift2

c′ ,match, drift2
c=1,padua,match,

drift2
c′ ,padua,match, drift2

c=1,nonmatch, drift2
c′ ,nonmatch, drift2

c=1,padua,nonmatch, and

drift2
c′ ,padua,nonmatch was N(0, 20). The priors for drift1

s , driftr
s , drift2

s ,

drift2
s,match, and drift2

s,nonmatch were hierarchical, N(0,σ1
drift), N(0,σr

drift),
N(0,σ2

drift), N(0,σ2
drift,match), and N(0,σ2

drift,nonmatch), respectively, with the

prior for each of σ1
drift , σ

r
drift , σ

2
drift , σ

2
drift,match, and σ2

drift,nonmatch set to

N(0, 20). The prior for each of σ1
drift,trial, σ

r
drift,trial, and σ2

drift,trial was similarly
N(0, 20). Each corresponding parameter for the starting preference for the
second decision episode had equivalent priors.

The prior for each of bound1
c′ , bound1

c=1,padua, bound1
c′ ,padua, boundr

c′ ,

boundr
c=1,padua, boundr

c′ ,padua, bound2
c′ , bound2

c=1,padua, and bound2
c′ ,padua

was similarly N(0, 20). The prior for each of bound1
c=1, boundr

c=1, and
bound2

c=1 was N(1, 20), biased positive (because it does not make sense for
the boundary separation to be 0), but with a large variance. For the same
reason, the latter three parameters were constrained with a lower bound of
0. The prior for bound1

s , boundr
s , and bound2

s was hierarchical, N(0,σ1
bound),

N(0,σr
bound), and N(0,σ2

bound), respectively, with the prior for each of σ1
bound ,
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σr
bound , and σ2

bound set to N(0, 20). Priors for all additional regressors in Exper-
iment 2 as described above were equivalent to the priors for the Padua
regressors.

The prior for each participant’s nondecision time for the first decision and
the memory retrieval was hierarchical, N(τ1,σ1

τ ) and N(τ r ,σr
τ ). The prior for

τ1 and τ r was N(0.25, 5), and the prior for σ1
τ and σr

τ was set to N(0, 5). The
means were biased slightly positive, but all had relatively large variances. A
single τ2 was used for all participants for the second decision’s nondecision
time with a N(0.25, 5) prior. Fitting a separate nondecision time for each par-
ticipant resulted in model convergence issues due to pathologies in the shape
of the posterior, which were caused by participants’ having more similar non-
decision times for the second decision episode than the first decision episode
or memory retrieval. The nondecision time is constrained by the fastest trials,
and because substantial evidence integration was not required during the sec-
ond decision many more participants had similarly fast trials. The explanation
for seeing convergence issues also justifies treating this parameter as fixed
across subjects. All τ parameters had a lower bound of 0.

Although as described above we did not exclude trials or whole partici-
pants based on whether or not the second decision episode was faster than
0.25 s, we did exclude such decisions from the drift-diffusion model anal-
ysis. The assumption here is that such very fast responses involve no new
evidence integration and are based strictly on prior knowledge from the
first decision episode or reflect lapses in attention. The fits between the
model and data are shown in SI Appendix, Figs. S9–S14. We also refit both

experiments using log-normal (0, 1) priors instead of half-normal priors for
all zero-bounded parameters (baseline boundary separation, nondecision
time, and all SD parameters). Our results remained unchanged with log-
normal priors. Finally, we also conducted a simulation study to test our
ability to recover parameter values. We simulated 20 synthetic datasets each
with three conditions similar to the real experiment for a range of param-
eter values guided by the results of the first experiment. We applied the
same model fitting procedure as above and plotted the median of the pos-
terior against the actual value used in the simulation for the parameters of
interest. The results are displayed in SI Appendix, Figs. S15 and S16, which
demonstrate excellent parameter recovery ability.

Throughout, an effect was treated as significant if its central 95%
credible interval excluded the critical value of interest (e.g., 0).

Statistical Tests. ANOVA was performed using the afex package in R. Non-
sphericity was assessed using Mauchly’s test, and degrees of freedom and
P values were corrected using the Greenhouse–Geisser correction where
noted. Reported t tests were double-sided.

Data Availability. Behavioral data have been deposited on the Open Science
Framework (OSF), https://osf.io/7f542/.
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